Analog of Hamilton-Jacobi theory for the time-evolution operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Hamilton-Jacobi Theory

We develop a discrete analogue of the Hamilton–Jacobi theory in the framework of the discrete Hamiltonian mechanics. We first reinterpret the discrete Hamilton–Jacobi equation derived by Elnatanov and Schiff in the language of discrete mechanics. The resulting discrete Hamilton– Jacobi equation is discrete only in time, and is shown to recover the Hamilton–Jacobi equation in the continuous-time...

متن کامل

Quantum Hamilton-Jacobi theory.

Quantum canonical transformations have attracted interest since the beginning of quantum theory. Based on their classical analogues, one would expect them to provide a powerful quantum tool. However, the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We over...

متن کامل

Alternating Evolution Schemes for Hamilton-Jacobi Equations

In this work, we propose a high-resolution alternating evolution (AE) scheme to solve Hamilton–Jacobi equations. The construction of the AE scheme is based on an alternating evolution system of the Hamilton–Jacobi equation, following the idea previously developed for hyperbolic conservation laws. A semidiscrete scheme derives directly from a sampling of this system on alternating grids. Higher ...

متن کامل

n-symplectic Hamilton-Jacobi Theory

In previous work n-symplectic geometry on the adapted frame bundle λ : LπE → E of an n = (m + k)-dimensional fiber bundle π : E → M has been used to forumulate covariant Lagrangian field theory that is standardly formulated on the bundle J1π of 1 jets of sections of π. In this paper we set up an n-symplectic Hamilton-Jacobi equation in order to identify the analogue of a polarization that plays...

متن کامل

Regularity Theory for Hamilton-Jacobi Equations

using a new set of ideas that combines dynamical systems techniques with control theory and viscosity solutions methods. In (1), H(p, x) : R → R is a smooth Hamiltonian, strictly convex, i.e., D vvL(x, v) > γ > 0 uniformly (this is also called uniformly convex by some authors), and coercive in p (lim|p|→∞ H(p,x) |p| = ∞), and Z n periodic in x (H(p, x + k) = H(p, x) for k ∈ Z). Since R is the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2019

ISSN: 2469-9926,2469-9934

DOI: 10.1103/physreva.100.012132